Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(16): 2279-2282, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36734956

RESUMO

Coupling polymer and ionic liquids with electrodes for catalysis is a promising tool for optimization of electrocatalytic CO2 reduction reaction (CO2RR). Here, block copolymer ionic liquids BCPILs were synthesized via controlled radical polymerization and nucleophilic post-substitution to introduce imidazole moieties. We show that, thanks to these PIL functionalities, the BCPIL/Re@HPC/GDL electrode can keep the selectivity toward CO when a higher amount of water is present in the electrolyte than the raw Re@HPC/GDL system. Our results help to understand the development of solid-state ionic liquids for enhanced CO2RR in water-based electrolyte.

2.
Angew Chem Int Ed Engl ; 61(38): e202206399, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35781916

RESUMO

There has been a rapid rise in interest regarding the advantages of support materials to protect and immobilise molecular catalysts for the carbon dioxide reduction reaction (CO2 RR) in order to overcome the weaknesses of many well-known catalysts in terms of their stability and selectivity. In this Review, the state of the art of different catalyst-support systems for the CO2 RR is discussed with the intention of leading towards standard benchmarking for comparison of such systems across the most relevant supports and immobilisation strategies, taking into account these multiple pertinent metrics, and also enabling clearer consideration of the necessary steps for further progress. The most promising support systems are described, along with a final note on the need for developing more advanced experimental and computational techniques to aid the rational design principles that are prerequisite to prospective industrial upscaling.

3.
ChemSusChem ; 13(23): 6449-6456, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33085837

RESUMO

The exploitation of molecular catalysts for CO2 electrolysis requires their immobilization on the cathode of the electrolyzer. As an illustration of this approach, a Ni-cyclam complex with a cyclam derivative functionalized with a pyrene moiety is synthesized, found to be a selective catalyst for CO2 electroreduction to CO, and immobilized on a carbon nanotube-coated gas diffusion electrode by using a noncovalent binding strategy. The as-prepared electrode is efficient, selective, and robust for electrocatalytic reduction of CO2 to CO. Very high turnover numbers (ca. 61460) and turnover frequencies (ca. 4.27 s-1 ) are enabled by the novel electrode material in organic solvent-water mixtures saturated with CO2 . This material provides an interesting platform for further improvement.

4.
ChemSusChem ; 13(23): 6418-6425, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32975035

RESUMO

The development of molecular catalysts for CO2 electroreduction within electrolyzers requests their immobilization on the electrodes. While a variety of methods have been explored for the heterogenization of homogeneous complexes, a novel approach using a hierarchical porous carbon material, derived from a metal-organic framework, is reported as a support for the well-known molecular catalyst [Re(bpy)(CO)3 Cl] (bpy=2,2'-bipyridine). This cathodic hybrid material, named Re@HPC (HPC=hierarchical porous carbon), has been tested for CO2 electroreduction using a mixture of an ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate, EMIM) and water as the electrolyte. Interestingly, it catalyzes the conversion of CO2 into a mixture of carbon monoxide and formic acid, with a selectivity that depends on the applied potential. The present study thus reveals that Re@HPC is a remarkable catalyst, enjoying excellent activity (turnover numbers for CO2 reduction of 7835 after 2 h at -1.95 V vs. Fc/Fc+ with a current density of 6 mA cm-2 ) and good stability. These results emphasize the advantages of integrating molecular catalysts onto such porous carbon materials for developing novel, stable and efficient, catalysts for CO2 reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...